Datatype sizes
Integers
int8
int16
int32
(int
for 32bits)int64
(int
for 64bits)uint8
uint16
uint32
uint64
np.array([2**32], dtype=np.int32).dtype
# shows deprecation warning because of out-of-bound integer
# conversion to smaller data size
We can check the size of numpy integer datatype using method np.iinfo
.
np.iinfo(np.int32)
# iinfo(min=-2147483648, max=2147483647, dtype=int32)
Floats
To check the size of float integers, we can use method np.finfo
.
np.finfo(np.float64)
# finfo(resolution=1e-15, min=-1.7976931348623157e+308, max=1.7976931348623157e+308, dtype=float64)
Available floats,
float16
float32
float64
float96
platform dependent (ornp.longdouble
)float128
platform dependent (ornp.longdouble
)
np.finfo(np.float32).eps
# 1.1920929e-07
Note
eps
is machine epsilon which defines round off error for float numbers.
Complex numbers
complex64
two bits floatscomplex128
two bits floatscomplex192
two bits floats, platform depedentcomplex256
two bits floats, platform depedent